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1

Introduction

1.1 Objective

1.2 The traditional chronostratic scale (TCSS)

1.3 Standardization of the global chronostratic scale (GCSS)

1.4 The global chronometric or geochronometric scale
(GCMS)

1.5 Statement of age

1.6 Natural chronologies (NCS) and event sequences

1.7 Local rock units

1.8 Geochronologic scales (GCS)

1.9 Procedures adopted in the construction of this time scale
(GTS 89)

1.1 Objective

A geologic time scale (geochronologic scale) is
composed of standard stratigraphic divisions based on rock
sequences and calibrated in years. It is thus (Figure 1.1) the
joining of two different kinds of scale, a chronometric scale
and a chronostratic scale. A chronometric scale (CMS) is
based on units of duration — the standard second - hence a
year. A chronostratic scale (CSS) is now conceived as a scale
of rock sequences with standardized reference points selected
in subsections, each particularly complete at and near the
boundary and known as a boundary stratotype. The chrono-
stratic scale is a convention to be agreed rather than

Figure 1.1. The making of a time scale.

Chronometric Chronostratic

Scale Scale
CMS CSS
calibration

Geochronologic
Scales
GCS
e.g.
this work
GTS 1989

discovered, while its calibration in years is a matter for
discovery or estimation rather than agreement. Whereas the
chronostratic scale once agreed should generally stand
unchanged, its evaluation will be subject to repeated revision.
For this reason, no geologic time scale can be final and this
particular attempt (GTS 89) must be qualified by ‘1989’, its
year of completion.

The concepts employed here have in the past been used
in different combinations of words, for example (standard)
(global) (geo)chronostrat(igraph)ic (time) scale is generally
contracted to chronostratic scale. Other contractions may be
clear enough in context. Such acronyms are shown in Figures
1.1, 1.2 and 1.4 and explained on p.xvi.

Regional chronostratic scales (RCSS) have gradually
given rise (Figure 1.2) to the single global traditional
stratigraphic scale (TCSS). This is being refined and
standardized at global stratotype sections and points (GSSP)
to give definition to the standard global chronostratic scale
(GCSS); see Chapter 3. Regional points are competing for
GSSP in this process. Chronometric scales were also first
developed regionally and are being standardized as a single
agreed standard chronometric scale (GCMS); see Chapter 2.

The calibration of any chronostratic scale in years yields
what is commonly called a time scale (e.g. the title of this
book, GTS). To distinguish such a calibration from other time
scales they may be referred to generally as geochronologic
(chronostratic & chronometric) scales (GCS).

Figure 1.2 shows the relationship of these entities.

Figure 1.2. Steps in the development of a time scale —- GSSP =
Global stratotype section and point; CMS = Chronometric
scale; CSS = Chronostratic scale; GCS = Geochronologic
scale; GCMS = Global chronometric scale; GCSS = Global
chronostratic scale; TCSS = Traditional chronostratic scale;
RCMS = Regional chronometric scale; RCSS = Regional
chronostratic scale.
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Figure 1.3. Outline chronometric and chronostratic time scales.
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Figure 1.3 as an example illustrates side-by-side the evolving
state of two such scales. Figure 1.4 identifies the logical steps
in this process of calibrating sequences of natural events or
natural chronologies (NCS).

1.2 The traditional chronostratic scale (TCSS)
The prodigious stratigraphic labours of the nineteenth
century resulted in innumerable competing stratigraphic
schemes. To impose some order the first International
Geological Congress (IGC) in Paris in 1878 set as its objective
the production of a standard stratigraphic scale. Suggestions
were made for standard colours (Anon. 1882, pp.70-82),
uniformity of geologic nomenclature (pp.82-4) and the
adoption of uniform subdivisions (pp.85-7). There was also a
review of several regional stratigraphic problems. In the

succeeding congress at Bologna in 1881, many of the above
suggestions were taken substantially further, i.e. international
maps were planned with standard colours for stratigraphic
periods and rock types (e.g. Anon. 1882, pp.297-411) and
annexes contained national contributions towards
standardization of stratigraphic classification, etc. (pp.429-
658).

In spite of this promising start, the IGCs did not have
the continuing organization to carry these proposals through,
except for the commissions set up to produce international
maps. It was not until the establishment of the International
Unton of Geological Sciences (IUGS) around 1960 that the
promise had a means of fulfilment, through the IUGS’s
Commission of Stratigraphy and its many subcommissions.

By 1878 the early belief that the stratigraphic systems
and other divisions being described in any one place were
natural chapters of Earth history was fading and the need to
agree some conventions was widely recognized. Even so, the
practice continued of describing stratal divisions largely as
biostratigraphic units, and even today it is an article of faith
for many that divisions of the developing international
stratigraphic scale are defined by the fossil content of the
rocks. To follow this through, however, leads to difficulties:
boundaries may change with new fossil discoveries;
boundaries defined by particular fossils will tend to be
diachronous; there will be disagreement as to which taxa shall
be definitive. So the traditional stratigraphic scale is of
necessity evolving into a new kind of standard chronostratic
scale.

1.3 Standardization of the global chronostratic
scale (GCSS)
At the 1948 IGC one of the first attempts to standardize
a stratigraphic boundary was made (the Pliocene-Pleistocene
boundary by convention at the base of the Calabrian Stage in
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Figure 1.4. Steps in the calibration of sequences of natural
events.
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Italy). Such a decision had to be an agreed convention. It was
agreed to standardize divisions at their boundaries only, and
each boundary at only one locality. The international
procedure to standardize such a boundary at a single point in a
reference subsection was worked out by the Silurian—
Devonian Boundary Working Group. Their procedure was
first to agree upon the approximate position in the
biostratigraphic sequence that would best fit existing usage
and then to find a succession somewhere in the world where
the Silurian—Devonian boundary was represented in
fossiliferous rock with the best potential for correlation. If we
take this procedure as a guide, the requirements for the
standard gee- or global chronostratic scale (GCSS) follow.

A sequence of reference points in continuous
subsections of uniform (marine) sedimentary facies selected
with suitable potential for international correlation, state of
preservation and access needs to be agreed. The precise
reference point for each boundary is now known as the global
stratotype section and point = GSSP (Cowie ez al. 1986). It is
then conceived as representing the point in time when that
part of the rock was formed. Rock immediately below (formed
before the point in time) or above (formed after it) should
contain characters for correlation. Pairs of such points then
define the intervening time span. The global chronostratic
scale is ultimately defined by a sequence of GSSP.

The procedure has a significant consequence in the
conception of chronostratic divisions. Before the
standardization just described, the intervals were conceived as
being the time equivalent of a rock unit that was already
defined. Thus systems (series, stages or chronozones) were
first described and the geologic periods (epochs, ages, chrons)
were derived as the corresponding time intervals. The practice
implied the assumption that the bases of such rock divisions
are not diachronous. Even without that assumption, for a
while ‘body stratotypes’ (type sections) were thought to be
sufficient. The new procedure of defining boundary points
effectively reverses the derivation. The time division (period,
etc.) is now defined precisely by selecting initial and terminal
points, while the corresponding rock formed in the interval
(system, etc.) cannot be identified with certainty at its
boundaries other than at the GSSP depending, as it does, on
estimates of relative age by correlation. This generally yields a
chronostratically well-dated main body of the rock division,
but with uncertain initial and terminal boundaries away from
the GSSP. To emphasize the primacy of time in such a time
scale, Early, Mid and Late are used rather than Lower,
Middle and Upper, for subdivisions of the primary named
intervals.

Various names have been proposed for the newly stand-
ardized scale. The Geological Society of London (GSL) used
standard stratigraphic scale (SSS), in contrast to the tra-
ditional stratigraphic scale (TSS) and regional stratigraphic
scales (RSS) out of which it was evolving (George er al. 1967).
The International Subcommission on Stratigraphic
Classification (ISSC) referred to it as the standard global
chronostratigraphic scale in the International Stratigraphic
Guide (Hedberg 1976). Both the American Stratigraphic
Code, and the ISSC Guide into which it grew, confused the
matter somewhat. They divided the standard scale as

described here into two categories: periods and systems. Their
geochronologic units refer to periods, etc. and
chronostratigraphic units to systems, etc. It is obvious that
time and rock are different (e.g. as indicated by the words
period and system), but when defined they both derive from
the same standard reference points. The two apparently
distinct disciplines, geochronology and chronostratigraphy in
Hedberg’s terminology, are thus different aspects of a single
procedure.

It is both traditional and convenient to use a hierarchy
of names for stratigraphic intervals (era, period, epoch, age,
chron). The use of the hierarchy is largely a matter of habit
but it has its uses in both economy of description and in
describing events of different duration or uncertainty of
correlation. The chronostratic divisions of any rank in the
hierarchy are defined in the same way by GSSP. There is no
difference in principle between a GSSP defining an initial
chron or an initial era boundary. Indeed, the same GSSP may
serve as the initial boundary for several ranks in the hierarchy.
The ranks are then conterminous and the principle of
conterminosity simplifies the use of a hierarchy.

The names for the spans are generally those favoured
from classic sections. Once selected for the GCSS, however,
they cease to have local reference and must be used inter-
nationally for the time span defined by the limiting points. It is
convenient to retain familiar names but, when redefined at
some distance from the eponymous locality, the local
geologists must accept that the name has acquired a new
meaning and possibly avoid its old use by renaming the
original rock unit. For example, when Pridoli was accepted as
an epoch name in the GCSS the original Pridoli Formation
from which it came was renamed.

The above principles developed for the global
chronostratic scale can be applied to regional chronostratic
scales (RCSS) as a step in the process of correlation, but the
multiplication of scales is not generally helpful. The work of
standardization is considerable and need not be multiplied.
Until such a global time scale is standardized, points in
regional scales (RSSP) may be regarded as candidates for
GSSP. The development of the global chronostratic scale is
addressed further in Chapter 3.

1.4 The global chronometric or geochronometric

scale (GCMS)

The proposal for a global chronometric scale is quite
different. The scale is linear, i.e. it is compounded of units of
equal duration. Therefore all that is essential is to define a
standard unit — a second of time based on the cesium ‘clock’ -
and so derive one year. In the same way that a linear scale of
length is constructed from unit lengths and is so defined, the
chronometric scale exists by virtue of the definition of a unit of
duration (see Chapter 2).

A further convention is to compound the units into
longer, named intervals. Such a scheme of millennia (10° yr),
gigennia (10° yr), etc. is by no means essential but, as with the
higher ranks of the chronostratic hierarchy, they may be
convenient in general expressions of age. Unlike the
chronostratic divisions they will be defined not by reference
points in rock but by initial and terminal points, each defined
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by a finite number of units of duration BP (Before Present —
by convention in '*C determinations counted from 1950).
These matters are taken further in Chapter 2.

There are those who think that there is some advantage
in treating Precambrian history as sufficiently different from
Phanerozoic history as to require the use only of named
chronometric divisions for Precambrian time. This opinion
derived from the general absence of fossils as it seemed in the
Precambrian rocks, which is no longer so. Thus the
Subcommission on Precambrian Stratigraphy of the IUGS
agreed in 1976 that the boundary between Archean and
Proterozoic should be defined at 2500 Ma exactly (but not yet
ratified by the International Commission of Stratigraphy
(ICS)); moreover, other subdivisions of Precambrian time
have also been proposed along the same lines, as will be seen
in Chapter 2. Our preferred alternative would be to extend the
scheme of named chronostratic divisions backwards into
Precambrian time (as is developed in Chapter 3). A parallel
development of named chronometric divisions forward
through Phanerozoic time is not proposed here but cannot be
dismissed.

There is thus only one standard for a general
chronometric scale (the second and hence the year). For the
geochronometric scale present needs to be defined and the
difference between BP and BC is generally irrelevant. The
matter at issue is the naming of spans of time and their
numerical definitions. Together these should provide a stable
GCMS (see Chapter 2).

1.5 Statement of age

The two conventional scales outlined above (chrono-
stratic and chronometric) do not in themselves enable us to
date or to time-correlate rocks one with another. Their
function is to provide agreed standards for expressing the ages
of rocks. They reduce the number of ways in which geologic
ages are stated (ideally to two: one by named intervals
between defined events (GSSP) and one numerical). Both are
conventions and neither is better than the other. The two do
not and cannot define each other and so they are both needed.
According to circumstances, some rocks can be dated
chronometrically more precisely than chronostratically and for
others more precise ages can be given chronostratically. Only
if the conversion of one scale to the other were far more
precise than it now is could any age usefully be given either in
years or in named chrons.

Both scales are decided by convention and have
therefore been referred to as artificial; but the word artificial
has an unfortunate connotation of inferiority. The scales are
artifacts and artifactual would better express their
conventional nature.

Alternative terminology for the two ways of stating age
(chronometric and chronostratic) have been relative and
absolute, which is an unfortunate distinction because both are
relative and neither is absolute. In German, Phanomologische
Alter and Chronometrische Alter have been used (Englehardt
& Zimmermann 1982, p.114). Stratigraphic is also unsuitable
for CSS because in the wider sense of stratigraphy as geo-
history both expressions for age are stratigraphic.

There is some similarity between the above pairs and

McTaggart’s (1908) A series and B series. These two concepts
(argued by philosophers rather than geoscientists) have been
applied to human experience of ever changing past, present
and future (A series). This gives an objective sequence of
events (whether conscious or historical) which relate to other
events being earlier, coeval or later. Such events may be
consolidated in a chronometrically calibrated sequence (B
series, i.e. the real time of Mellor 1981).

1.6 Natural chronologies (NCS) and event
sequences

Particular historical geological phenomena are
commonly known as events. They are of many kinds, for
example magmatic, sedimentary, biologic, tectonic, magnetic,
eustatic, climatic, celestial and geochemical. They are the
basis of stratigraphy in the full sense of geohistory and
especially of event sequences with time-correlation. The
current term event stratigraphy is redundant because
stratigraphy has always depended on interpretation of strata in
terms of events. Some events are more obvious, identifiable,
widespread, predictable, or sudden than others. All are the
subjects of investigation. Therefore all are in part matters of
opinion — the substance of hypotheses liable to revision.

Interest in these natural phenomena motivates science.
The time scales already discussed are tools only for the study
of phenomena. The scales have no application without time-
correlation, which is entirely dependent on the interpretation
of natural phenomena. Events are such interpretations.

A GSSP may be conceived as relating to phenomena
and therefore to interpreted events. For example, the tip of
the ‘golden spike’ (the colloquial term for a GSSP) may
separate two sand grains, one deposited before and the other
after the designated point in time. In a uniform sequence the
point has little significance as a special event — it is almost a
non-event and so it can be the more readily agreed as a point
in the conventional chronostratic scale.

Other events — a particular astronomical year — or (later)
the perturbations of the cesium atom have been selected as the
basis of the chronometric scale.

The distinction between time scale as a tool for the
study of natural history and something expressing natural
history itself has only slowly become recognized. It was
previously assumed that most classes and subclasses of event
would somehow fit into the divisions of the story that was
gradually being revealed. Calibration of event sequences
against independent time scales liberates the phenomena for
investigation of their interplay. Some examples of classes of
event sequence follow.

Sedimentation or magmatism (with subsequent
alteration) yields bodies of rock that provide the most
convenient descriptive units (formations) as introduced in
Section 1.7.

Biologic evolutionary history, especially for
Phanerozoic time, has given us not only the principal means of
time-correlation but the basis of the unique progressive
traditional stratigraphic scale. Definition of biozones, through
biochrons, to chrons defined by GSSP, is only now slowly
taking place. For this reason the figures in Chapter 3 list
selected biostratigraphic events. In due course the distinction



